sx1280.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
  1. /*
  2. ______ _
  3. / _____) _ | |
  4. ( (____ _____ ____ _| |_ _____ ____| |__
  5. \____ \| ___ | (_ _) ___ |/ ___) _ \
  6. _____) ) ____| | | || |_| ____( (___| | | |
  7. (______/|_____)_|_|_| \__)_____)\____)_| |_|
  8. (C)2016 Semtech
  9. Description: Driver for SX1280 devices
  10. License: Revised BSD License, see LICENSE.TXT file include in the project
  11. Maintainer: Miguel Luis, Gregory Cristian and Matthieu Verdy
  12. */
  13. #include <string.h>
  14. #include "sx1280.h"
  15. #include "sx1280-hal.h"
  16. /*!
  17. * \brief Radio registers definition
  18. *
  19. */
  20. typedef struct
  21. {
  22. uint16_t Addr; //!< The address of the register
  23. uint8_t Value; //!< The value of the register
  24. }RadioRegisters_t;
  25. /*!
  26. * \brief Radio hardware registers initialization definition
  27. */
  28. // { Address, RegValue }
  29. #define RADIO_INIT_REGISTERS_VALUE { NULL }
  30. /*!
  31. * \brief Radio hardware registers initialization
  32. */
  33. const RadioRegisters_t RadioRegsInit[] = RADIO_INIT_REGISTERS_VALUE;
  34. /*!
  35. * \brief Holds the internal operating mode of the radio
  36. */
  37. static RadioOperatingModes_t OperatingMode;
  38. /*!
  39. * \brief Stores the current packet type set in the radio
  40. */
  41. static RadioPacketTypes_t PacketType;
  42. /*!
  43. * \brief Stores the current LoRa bandwidth set in the radio
  44. */
  45. static RadioLoRaBandwidths_t LoRaBandwidth;
  46. /*!
  47. * \brief Holds the polling state of the driver
  48. */
  49. static bool PollingMode;
  50. /*!
  51. * Hardware DIO IRQ callback initialization
  52. */
  53. DioIrqHandler *DioIrq[] = { SX1280OnDioIrq };
  54. void SX1280OnDioIrq( void );
  55. /*!
  56. * \brief Holds a flag raised on radio interrupt
  57. */
  58. static bool IrqState;
  59. static RadioCallbacks_t* RadioCallbacks;
  60. int32_t SX1280complement2( const uint32_t num, const uint8_t bitCnt )
  61. {
  62. int32_t retVal = ( int32_t )num;
  63. if( num >= 2<<( bitCnt - 2 ) )
  64. {
  65. retVal -= 2<<( bitCnt - 1 );
  66. }
  67. return retVal;
  68. }
  69. void SX1280Init( RadioCallbacks_t *callbacks )
  70. {
  71. RadioCallbacks = callbacks;
  72. SX1280HalInit( 0 );
  73. }
  74. void SX1280SetRegistersDefault( void )
  75. {
  76. int16_t i;
  77. for( i = 0; i < sizeof( RadioRegsInit ) / sizeof( RadioRegisters_t ); i++ )
  78. {
  79. SX1280HalWriteRegister( RadioRegsInit[i].Addr, RadioRegsInit[i].Value );
  80. }
  81. }
  82. uint16_t SX1280GetFirmwareVersion( void )
  83. {
  84. return( ( ( SX1280HalReadRegister( REG_LR_FIRMWARE_VERSION_MSB ) ) << 8 ) | ( SX1280HalReadRegister( REG_LR_FIRMWARE_VERSION_MSB + 1 ) ) );
  85. }
  86. RadioStatus_t SX1280GetStatus( void )
  87. {
  88. uint8_t stat = 0;
  89. RadioStatus_t status;
  90. SX1280HalReadCommand( RADIO_GET_STATUS, ( uint8_t * )&stat, 1 );
  91. status.Value = stat;
  92. return status;
  93. }
  94. RadioOperatingModes_t SX1280GetOpMode( void )
  95. {
  96. return OperatingMode;
  97. }
  98. void SX1280SetSleep( SleepParams_t sleepConfig )
  99. {
  100. uint8_t sleep = ( sleepConfig.WakeUpRTC << 3 ) |
  101. ( sleepConfig.InstructionRamRetention << 2 ) |
  102. ( sleepConfig.DataBufferRetention << 1 ) |
  103. ( sleepConfig.DataRamRetention );
  104. OperatingMode = MODE_SLEEP;
  105. SX1280HalWriteCommand( RADIO_SET_SLEEP, &sleep, 1 );
  106. }
  107. void SX1280SetStandby( RadioStandbyModes_t standbyConfig )
  108. {
  109. SX1280HalWriteCommand( RADIO_SET_STANDBY, ( uint8_t* )&standbyConfig, 1 );
  110. if( standbyConfig == STDBY_RC )
  111. {
  112. OperatingMode = MODE_STDBY_RC;
  113. }
  114. else
  115. {
  116. OperatingMode = MODE_STDBY_XOSC;
  117. }
  118. }
  119. void SX1280SetFs( void )
  120. {
  121. SX1280HalWriteCommand( RADIO_SET_FS, 0, 0 );
  122. OperatingMode = MODE_FS;
  123. }
  124. void SX1280SetTx( TickTime_t timeout )
  125. {
  126. uint8_t buf[3];
  127. buf[0] = timeout.Step;
  128. buf[1] = ( uint8_t )( ( timeout.NbSteps >> 8 ) & 0x00FF );
  129. buf[2] = ( uint8_t )( timeout.NbSteps & 0x00FF );
  130. SX1280ClearIrqStatus( IRQ_RADIO_ALL );
  131. // If the radio is doing ranging operations, then apply the specific calls
  132. // prior to SetTx
  133. if( SX1280GetPacketType( ) == PACKET_TYPE_RANGING )
  134. {
  135. SX1280SetRangingRole( RADIO_RANGING_ROLE_MASTER );
  136. }
  137. SX1280HalWriteCommand( RADIO_SET_TX, buf, 3 );
  138. OperatingMode = MODE_TX;
  139. }
  140. void SX1280SetRx( TickTime_t timeout )
  141. {
  142. uint8_t buf[3];
  143. buf[0] = timeout.Step;
  144. buf[1] = ( uint8_t )( ( timeout.NbSteps >> 8 ) & 0x00FF );
  145. buf[2] = ( uint8_t )( timeout.NbSteps & 0x00FF );
  146. SX1280ClearIrqStatus( IRQ_RADIO_ALL );
  147. // If the radio is doing ranging operations, then apply the specific calls
  148. // prior to SetRx
  149. if( SX1280GetPacketType( ) == PACKET_TYPE_RANGING )
  150. {
  151. SX1280SetRangingRole( RADIO_RANGING_ROLE_SLAVE );
  152. }
  153. SX1280HalWriteCommand( RADIO_SET_RX, buf, 3 );
  154. OperatingMode = MODE_RX;
  155. }
  156. void SX1280SetRxDutyCycle( RadioTickSizes_t Step, uint16_t NbStepRx, uint16_t RxNbStepSleep )
  157. {
  158. uint8_t buf[5];
  159. buf[0] = Step;
  160. buf[1] = ( uint8_t )( ( NbStepRx >> 8 ) & 0x00FF );
  161. buf[2] = ( uint8_t )( NbStepRx & 0x00FF );
  162. buf[3] = ( uint8_t )( ( RxNbStepSleep >> 8 ) & 0x00FF );
  163. buf[4] = ( uint8_t )( RxNbStepSleep & 0x00FF );
  164. SX1280HalWriteCommand( RADIO_SET_RXDUTYCYCLE, buf, 5 );
  165. OperatingMode = MODE_RX;
  166. }
  167. void SX1280SetCad( void )
  168. {
  169. SX1280HalWriteCommand( RADIO_SET_CAD, 0, 0 );
  170. OperatingMode = MODE_CAD;
  171. }
  172. void SX1280SetTxContinuousWave( void )
  173. {
  174. SX1280HalWriteCommand( RADIO_SET_TXCONTINUOUSWAVE, 0, 0 );
  175. }
  176. void SX1280SetTxContinuousPreamble( void )
  177. {
  178. SX1280HalWriteCommand( RADIO_SET_TXCONTINUOUSPREAMBLE, 0, 0 );
  179. }
  180. void SX1280SetPacketType( RadioPacketTypes_t packetType )
  181. {
  182. // Save packet type internally to avoid questioning the radio
  183. PacketType = packetType;
  184. SX1280HalWriteCommand( RADIO_SET_PACKETTYPE, ( uint8_t* )&packetType, 1 );
  185. }
  186. RadioPacketTypes_t SX1280GetPacketType( void )
  187. {
  188. return PacketType;
  189. }
  190. void SX1280SetRfFrequency( uint32_t frequency )
  191. {
  192. uint8_t buf[3];
  193. uint32_t freq = 0;
  194. freq = ( uint32_t )( ( double )frequency / ( double )FREQ_STEP );
  195. buf[0] = ( uint8_t )( ( freq >> 16 ) & 0xFF );
  196. buf[1] = ( uint8_t )( ( freq >> 8 ) & 0xFF );
  197. buf[2] = ( uint8_t )( freq & 0xFF );
  198. SX1280HalWriteCommand( RADIO_SET_RFFREQUENCY, buf, 3 );
  199. }
  200. void SX1280SetTxParams( int8_t power, RadioRampTimes_t rampTime )
  201. {
  202. uint8_t buf[2];
  203. // The power value to send on SPI/UART is in the range [0..31] and the
  204. // physical output power is in the range [-18..13]dBm
  205. buf[0] = power + 18;
  206. buf[1] = ( uint8_t )rampTime;
  207. SX1280HalWriteCommand( RADIO_SET_TXPARAMS, buf, 2 );
  208. }
  209. void SX1280SetCadParams( RadioLoRaCadSymbols_t cadSymbolNum )
  210. {
  211. SX1280HalWriteCommand( RADIO_SET_CADPARAMS, ( uint8_t* )&cadSymbolNum, 1 );
  212. OperatingMode = MODE_CAD;
  213. }
  214. void SX1280SetBufferBaseAddresses( uint8_t txBaseAddress, uint8_t rxBaseAddress )
  215. {
  216. uint8_t buf[2];
  217. buf[0] = txBaseAddress;
  218. buf[1] = rxBaseAddress;
  219. SX1280HalWriteCommand( RADIO_SET_BUFFERBASEADDRESS, buf, 2 );
  220. }
  221. void SX1280SetModulationParams( ModulationParams_t *modulationParams )
  222. {
  223. uint8_t buf[3];
  224. // Check if required configuration corresponds to the stored packet type
  225. // If not, silently update radio packet type
  226. if( PacketType != modulationParams->PacketType )
  227. {
  228. SX1280SetPacketType( modulationParams->PacketType );
  229. }
  230. switch( modulationParams->PacketType )
  231. {
  232. case PACKET_TYPE_GFSK:
  233. buf[0] = modulationParams->Params.Gfsk.BitrateBandwidth;
  234. buf[1] = modulationParams->Params.Gfsk.ModulationIndex;
  235. buf[2] = modulationParams->Params.Gfsk.ModulationShaping;
  236. break;
  237. case PACKET_TYPE_LORA:
  238. case PACKET_TYPE_RANGING:
  239. buf[0] = modulationParams->Params.LoRa.SpreadingFactor;
  240. buf[1] = modulationParams->Params.LoRa.Bandwidth;
  241. buf[2] = modulationParams->Params.LoRa.CodingRate;
  242. LoRaBandwidth = modulationParams->Params.LoRa.Bandwidth;
  243. break;
  244. case PACKET_TYPE_FLRC:
  245. buf[0] = modulationParams->Params.Flrc.BitrateBandwidth;
  246. buf[1] = modulationParams->Params.Flrc.CodingRate;
  247. buf[2] = modulationParams->Params.Flrc.ModulationShaping;
  248. break;
  249. case PACKET_TYPE_BLE:
  250. buf[0] = modulationParams->Params.Ble.BitrateBandwidth;
  251. buf[1] = modulationParams->Params.Ble.ModulationIndex;
  252. buf[2] = modulationParams->Params.Ble.ModulationShaping;
  253. break;
  254. case PACKET_TYPE_NONE:
  255. buf[0] = NULL;
  256. buf[1] = NULL;
  257. buf[2] = NULL;
  258. break;
  259. }
  260. SX1280HalWriteCommand( RADIO_SET_MODULATIONPARAMS, buf, 3 );
  261. }
  262. void SX1280SetPacketParams( PacketParams_t *packetParams )
  263. {
  264. uint8_t buf[7];
  265. // Check if required configuration corresponds to the stored packet type
  266. // If not, silently update radio packet type
  267. if( PacketType != packetParams->PacketType )
  268. {
  269. SX1280SetPacketType( packetParams->PacketType );
  270. }
  271. switch( packetParams->PacketType )
  272. {
  273. case PACKET_TYPE_GFSK:
  274. buf[0] = packetParams->Params.Gfsk.PreambleLength;
  275. buf[1] = packetParams->Params.Gfsk.SyncWordLength;
  276. buf[2] = packetParams->Params.Gfsk.SyncWordMatch;
  277. buf[3] = packetParams->Params.Gfsk.HeaderType;
  278. buf[4] = packetParams->Params.Gfsk.PayloadLength;
  279. buf[5] = packetParams->Params.Gfsk.CrcLength;
  280. buf[6] = packetParams->Params.Gfsk.Whitening;
  281. break;
  282. case PACKET_TYPE_LORA:
  283. case PACKET_TYPE_RANGING:
  284. buf[0] = packetParams->Params.LoRa.PreambleLength;
  285. buf[1] = packetParams->Params.LoRa.HeaderType;
  286. buf[2] = packetParams->Params.LoRa.PayloadLength;
  287. buf[3] = packetParams->Params.LoRa.CrcMode;
  288. buf[4] = packetParams->Params.LoRa.InvertIQ;
  289. buf[5] = NULL;
  290. buf[6] = NULL;
  291. break;
  292. case PACKET_TYPE_FLRC:
  293. buf[0] = packetParams->Params.Flrc.PreambleLength;
  294. buf[1] = packetParams->Params.Flrc.SyncWordLength;
  295. buf[2] = packetParams->Params.Flrc.SyncWordMatch;
  296. buf[3] = packetParams->Params.Flrc.HeaderType;
  297. buf[4] = packetParams->Params.Flrc.PayloadLength;
  298. buf[5] = packetParams->Params.Flrc.CrcLength;
  299. buf[6] = packetParams->Params.Flrc.Whitening;
  300. break;
  301. case PACKET_TYPE_BLE:
  302. buf[0] = packetParams->Params.Ble.ConnectionState;
  303. buf[1] = packetParams->Params.Ble.CrcField;
  304. buf[2] = packetParams->Params.Ble.BlePacketType;
  305. buf[3] = packetParams->Params.Ble.Whitening;
  306. buf[4] = NULL;
  307. buf[5] = NULL;
  308. buf[6] = NULL;
  309. break;
  310. case PACKET_TYPE_NONE:
  311. buf[0] = NULL;
  312. buf[1] = NULL;
  313. buf[2] = NULL;
  314. buf[3] = NULL;
  315. buf[4] = NULL;
  316. buf[5] = NULL;
  317. buf[6] = NULL;
  318. break;
  319. }
  320. SX1280HalWriteCommand( RADIO_SET_PACKETPARAMS, buf, 7 );
  321. }
  322. void SX1280GetRxBufferStatus( uint8_t *payloadLength, uint8_t *rxStartBufferPointer )
  323. {
  324. uint8_t status[2];
  325. SX1280HalReadCommand( RADIO_GET_RXBUFFERSTATUS, status, 2 );
  326. // In case of LORA fixed header, the payloadLength is obtained by reading
  327. // the register REG_LR_PAYLOADLENGTH
  328. if( ( SX1280GetPacketType( ) == PACKET_TYPE_LORA ) && ( SX1280HalReadRegister( REG_LR_PACKETPARAMS ) >> 7 == 1 ) )
  329. {
  330. *payloadLength = SX1280HalReadRegister( REG_LR_PAYLOADLENGTH );
  331. }
  332. else if( SX1280GetPacketType( ) == PACKET_TYPE_BLE )
  333. {
  334. // In the case of BLE, the size returned in status[0] do not include the 2-byte length PDU header
  335. // so it is added there
  336. *payloadLength = status[0] + 2;
  337. }
  338. else
  339. {
  340. *payloadLength = status[0];
  341. }
  342. *rxStartBufferPointer = status[1];
  343. }
  344. void SX1280GetPacketStatus( PacketStatus_t *pktStatus )
  345. {
  346. uint8_t status[5];
  347. SX1280HalReadCommand( RADIO_GET_PACKETSTATUS, status, 5 );
  348. pktStatus->packetType = SX1280GetPacketType( );
  349. switch( pktStatus->packetType )
  350. {
  351. case PACKET_TYPE_GFSK:
  352. pktStatus->Params.Gfsk.RssiAvg = -status[0] / 2;
  353. pktStatus->Params.Gfsk.RssiSync = -status[1] / 2;
  354. pktStatus->Params.Gfsk.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
  355. pktStatus->Params.Gfsk.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
  356. pktStatus->Params.Gfsk.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
  357. pktStatus->Params.Gfsk.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
  358. pktStatus->Params.Gfsk.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
  359. pktStatus->Params.Gfsk.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
  360. pktStatus->Params.Gfsk.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
  361. pktStatus->Params.Gfsk.TxRxStatus.RxNoAck = ( status[3] >> 5 ) & 0x01;
  362. pktStatus->Params.Gfsk.TxRxStatus.PacketSent = status[3] & 0x01;
  363. pktStatus->Params.Gfsk.SyncAddrStatus = status[4] & 0x07;
  364. break;
  365. case PACKET_TYPE_LORA:
  366. case PACKET_TYPE_RANGING:
  367. pktStatus->Params.LoRa.RssiPkt = -status[0] / 2;
  368. ( status[1] < 128 ) ? ( pktStatus->Params.LoRa.SnrPkt = status[1] / 4 ) : ( pktStatus->Params.LoRa.SnrPkt = ( ( status[1] - 256 ) /4 ) );
  369. pktStatus->Params.LoRa.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
  370. pktStatus->Params.LoRa.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
  371. pktStatus->Params.LoRa.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
  372. pktStatus->Params.LoRa.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
  373. pktStatus->Params.LoRa.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
  374. pktStatus->Params.LoRa.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
  375. pktStatus->Params.LoRa.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
  376. pktStatus->Params.LoRa.TxRxStatus.RxNoAck = ( status[3] >> 5 ) & 0x01;
  377. pktStatus->Params.LoRa.TxRxStatus.PacketSent = status[3] & 0x01;
  378. pktStatus->Params.LoRa.SyncAddrStatus = status[4] & 0x07;
  379. break;
  380. case PACKET_TYPE_FLRC:
  381. pktStatus->Params.Flrc.RssiAvg = -status[0] / 2;
  382. pktStatus->Params.Flrc.RssiSync = -status[1] / 2;
  383. pktStatus->Params.Flrc.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
  384. pktStatus->Params.Flrc.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
  385. pktStatus->Params.Flrc.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
  386. pktStatus->Params.Flrc.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
  387. pktStatus->Params.Flrc.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
  388. pktStatus->Params.Flrc.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
  389. pktStatus->Params.Flrc.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
  390. pktStatus->Params.Flrc.TxRxStatus.RxPid = ( status[3] >> 6 ) & 0x03;
  391. pktStatus->Params.Flrc.TxRxStatus.RxNoAck = ( status[3] >> 5 ) & 0x01;
  392. pktStatus->Params.Flrc.TxRxStatus.RxPidErr = ( status[3] >> 4 ) & 0x01;
  393. pktStatus->Params.Flrc.TxRxStatus.PacketSent = status[3] & 0x01;
  394. pktStatus->Params.Flrc.SyncAddrStatus = status[4] & 0x07;
  395. break;
  396. case PACKET_TYPE_BLE:
  397. pktStatus->Params.Ble.RssiAvg = -status[0] / 2;
  398. pktStatus->Params.Ble.RssiSync = -status[1] / 2;
  399. pktStatus->Params.Ble.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
  400. pktStatus->Params.Ble.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
  401. pktStatus->Params.Ble.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
  402. pktStatus->Params.Ble.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
  403. pktStatus->Params.Ble.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
  404. pktStatus->Params.Ble.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
  405. pktStatus->Params.Ble.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
  406. pktStatus->Params.Ble.TxRxStatus.PacketSent = status[3] & 0x01;
  407. pktStatus->Params.Ble.SyncAddrStatus = status[4] & 0x07;
  408. break;
  409. case PACKET_TYPE_NONE:
  410. // In that specific case, we set everything in the pktStatus to zeros
  411. // and reset the packet type accordingly
  412. memset( pktStatus, 0, sizeof( PacketStatus_t ) );
  413. pktStatus->packetType = PACKET_TYPE_NONE;
  414. break;
  415. }
  416. }
  417. int8_t SX1280GetRssiInst( void )
  418. {
  419. uint8_t raw = 0;
  420. SX1280HalReadCommand( RADIO_GET_RSSIINST, &raw, 1 );
  421. return ( int8_t )( -raw / 2 );
  422. }
  423. void SX1280SetDioIrqParams( uint16_t irqMask, uint16_t dio1Mask, uint16_t dio2Mask, uint16_t dio3Mask )
  424. {
  425. uint8_t buf[8];
  426. buf[0] = ( uint8_t )( ( irqMask >> 8 ) & 0x00FF );
  427. buf[1] = ( uint8_t )( irqMask & 0x00FF );
  428. buf[2] = ( uint8_t )( ( dio1Mask >> 8 ) & 0x00FF );
  429. buf[3] = ( uint8_t )( dio1Mask & 0x00FF );
  430. buf[4] = ( uint8_t )( ( dio2Mask >> 8 ) & 0x00FF );
  431. buf[5] = ( uint8_t )( dio2Mask & 0x00FF );
  432. buf[6] = ( uint8_t )( ( dio3Mask >> 8 ) & 0x00FF );
  433. buf[7] = ( uint8_t )( dio3Mask & 0x00FF );
  434. SX1280HalWriteCommand( RADIO_SET_DIOIRQPARAMS, buf, 8 );
  435. }
  436. uint16_t SX1280GetIrqStatus( void )
  437. {
  438. uint8_t irqStatus[2];
  439. SX1280HalReadCommand( RADIO_GET_IRQSTATUS, irqStatus, 2 );
  440. return ( irqStatus[0] << 8 ) | irqStatus[1];
  441. }
  442. void SX1280ClearIrqStatus( uint16_t irq )
  443. {
  444. uint8_t buf[2];
  445. buf[0] = ( uint8_t )( ( ( uint16_t )irq >> 8 ) & 0x00FF );
  446. buf[1] = ( uint8_t )( ( uint16_t )irq & 0x00FF );
  447. SX1280HalWriteCommand( RADIO_CLR_IRQSTATUS, buf, 2 );
  448. }
  449. void SX1280Calibrate( CalibrationParams_t calibParam )
  450. {
  451. uint8_t cal = ( calibParam.ADCBulkPEnable << 5 ) |
  452. ( calibParam.ADCBulkNEnable << 4 ) |
  453. ( calibParam.ADCPulseEnable << 3 ) |
  454. ( calibParam.PLLEnable << 2 ) |
  455. ( calibParam.RC13MEnable << 1 ) |
  456. ( calibParam.RC64KEnable );
  457. SX1280HalWriteCommand( RADIO_CALIBRATE, &cal, 1 );
  458. }
  459. void SX1280SetRegulatorMode( RadioRegulatorModes_t mode )
  460. {
  461. SX1280HalWriteCommand( RADIO_SET_REGULATORMODE, ( uint8_t* )&mode, 1 );
  462. }
  463. void SX1280SetSaveContext( void )
  464. {
  465. SX1280HalWriteCommand( RADIO_SET_SAVECONTEXT, 0, 0 );
  466. }
  467. void SX1280SetAutoTx( uint16_t time )
  468. {
  469. uint16_t compensatedTime = time - ( uint16_t )AUTO_RX_TX_OFFSET;
  470. uint8_t buf[2];
  471. buf[0] = ( uint8_t )( ( compensatedTime >> 8 ) & 0x00FF );
  472. buf[1] = ( uint8_t )( compensatedTime & 0x00FF );
  473. SX1280HalWriteCommand( RADIO_SET_AUTOTX, buf, 2 );
  474. }
  475. void SX1280SetAutoFS( uint8_t enable )
  476. {
  477. SX1280HalWriteCommand( RADIO_SET_AUTOFS, &enable, 1 );
  478. }
  479. void SX1280SetLongPreamble( uint8_t enable )
  480. {
  481. SX1280HalWriteCommand( RADIO_SET_LONGPREAMBLE, &enable, 1 );
  482. }
  483. void SX1280SetPayload( uint8_t *buffer, uint8_t size )
  484. {
  485. SX1280HalWriteBuffer( 0x00, buffer, size );
  486. }
  487. uint8_t SX1280GetPayload( uint8_t *buffer, uint8_t *size , uint8_t maxSize )
  488. {
  489. uint8_t offset;
  490. SX1280GetRxBufferStatus( size, &offset );
  491. if( *size > maxSize )
  492. {
  493. return 1;
  494. }
  495. SX1280HalReadBuffer( offset, buffer, *size );
  496. return 0;
  497. }
  498. void SX1280SendPayload( uint8_t *payload, uint8_t size, TickTime_t timeout )
  499. {
  500. SX1280SetPayload( payload, size );
  501. SX1280SetTx( timeout );
  502. }
  503. uint8_t SX1280SetSyncWord( uint8_t syncWordIdx, uint8_t *syncWord )
  504. {
  505. uint16_t addr;
  506. uint8_t syncwordSize = 0;
  507. switch( SX1280GetPacketType( ) )
  508. {
  509. case PACKET_TYPE_GFSK:
  510. syncwordSize = 5;
  511. switch( syncWordIdx )
  512. {
  513. case 1:
  514. addr = REG_LR_SYNCWORDBASEADDRESS1;
  515. break;
  516. case 2:
  517. addr = REG_LR_SYNCWORDBASEADDRESS2;
  518. break;
  519. case 3:
  520. addr = REG_LR_SYNCWORDBASEADDRESS3;
  521. break;
  522. default:
  523. return 1;
  524. }
  525. break;
  526. case PACKET_TYPE_FLRC:
  527. // For FLRC packet type, the SyncWord is one byte shorter and
  528. // the base address is shifted by one byte
  529. syncwordSize = 4;
  530. switch( syncWordIdx )
  531. {
  532. case 1:
  533. addr = REG_LR_SYNCWORDBASEADDRESS1 + 1;
  534. break;
  535. case 2:
  536. addr = REG_LR_SYNCWORDBASEADDRESS2 + 1;
  537. break;
  538. case 3:
  539. addr = REG_LR_SYNCWORDBASEADDRESS3 + 1;
  540. break;
  541. default:
  542. return 1;
  543. }
  544. break;
  545. case PACKET_TYPE_BLE:
  546. // For Ble packet type, only the first SyncWord is used and its
  547. // address is shifted by one byte
  548. syncwordSize = 4;
  549. switch( syncWordIdx )
  550. {
  551. case 1:
  552. addr = REG_LR_SYNCWORDBASEADDRESS1 + 1;
  553. break;
  554. default:
  555. return 1;
  556. }
  557. break;
  558. default:
  559. return 1;
  560. }
  561. SX1280HalWriteRegisters( addr, syncWord, syncwordSize );
  562. return 0;
  563. }
  564. void SX1280SetSyncWordErrorTolerance( uint8_t ErrorBits )
  565. {
  566. ErrorBits = ( SX1280HalReadRegister( REG_LR_SYNCWORDTOLERANCE ) & 0xF0 ) | ( ErrorBits & 0x0F );
  567. SX1280HalWriteRegister( REG_LR_SYNCWORDTOLERANCE, ErrorBits );
  568. }
  569. void SX1280SetCrcSeed( uint16_t seed )
  570. {
  571. uint8_t val[2];
  572. val[0] = ( uint8_t )( seed >> 8 ) & 0xFF;
  573. val[1] = ( uint8_t )( seed & 0xFF );
  574. switch( SX1280GetPacketType( ) )
  575. {
  576. case PACKET_TYPE_GFSK:
  577. case PACKET_TYPE_FLRC:
  578. SX1280HalWriteRegisters( REG_LR_CRCSEEDBASEADDR, val, 2 );
  579. break;
  580. default:
  581. break;
  582. }
  583. }
  584. void SX1280SetBleAccessAddress( uint32_t accessAddress )
  585. {
  586. SX1280HalWriteRegister( REG_LR_BLE_ACCESS_ADDRESS, ( accessAddress >> 24 ) & 0x000000FF );
  587. SX1280HalWriteRegister( REG_LR_BLE_ACCESS_ADDRESS + 1, ( accessAddress >> 16 ) & 0x000000FF );
  588. SX1280HalWriteRegister( REG_LR_BLE_ACCESS_ADDRESS + 2, ( accessAddress >> 8 ) & 0x000000FF );
  589. SX1280HalWriteRegister( REG_LR_BLE_ACCESS_ADDRESS + 3, accessAddress & 0x000000FF );
  590. }
  591. void SX1280SetBleAdvertizerAccessAddress( void )
  592. {
  593. SX1280SetBleAccessAddress( BLE_ADVERTIZER_ACCESS_ADDRESS );
  594. }
  595. void SX1280SetCrcPolynomial( uint16_t polynomial )
  596. {
  597. uint8_t val[2];
  598. val[0] = ( uint8_t )( polynomial >> 8 ) & 0xFF;
  599. val[1] = ( uint8_t )( polynomial & 0xFF );
  600. switch( SX1280GetPacketType( ) )
  601. {
  602. case PACKET_TYPE_GFSK:
  603. case PACKET_TYPE_FLRC:
  604. SX1280HalWriteRegisters( REG_LR_CRCPOLYBASEADDR, val, 2 );
  605. break;
  606. default:
  607. break;
  608. }
  609. }
  610. void SX1280SetWhiteningSeed( uint8_t seed )
  611. {
  612. switch( SX1280GetPacketType( ) )
  613. {
  614. case PACKET_TYPE_GFSK:
  615. case PACKET_TYPE_FLRC:
  616. case PACKET_TYPE_BLE:
  617. SX1280HalWriteRegister( REG_LR_WHITSEEDBASEADDR, seed );
  618. break;
  619. default:
  620. break;
  621. }
  622. }
  623. void SX1280SetRangingIdLength( RadioRangingIdCheckLengths_t length )
  624. {
  625. switch( SX1280GetPacketType( ) )
  626. {
  627. case PACKET_TYPE_RANGING:
  628. SX1280HalWriteRegister( REG_LR_RANGINGIDCHECKLENGTH, ( ( ( ( uint8_t )length ) & 0x03 ) << 6 ) | ( SX1280HalReadRegister( REG_LR_RANGINGIDCHECKLENGTH ) & 0x3F ) );
  629. break;
  630. default:
  631. break;
  632. }
  633. }
  634. void SX1280SetDeviceRangingAddress( uint32_t address )
  635. {
  636. uint8_t addrArray[4];
  637. addrArray[0] = address >> 24;
  638. addrArray[1] = address >> 16;
  639. addrArray[2] = address >> 8;
  640. addrArray[3] = address >> 0;
  641. switch( SX1280GetPacketType( ) )
  642. {
  643. case PACKET_TYPE_RANGING:
  644. SX1280HalWriteRegisters( REG_LR_DEVICERANGINGADDR, addrArray, 4 );
  645. break;
  646. default:
  647. break;
  648. }
  649. }
  650. void SX1280SetRangingRequestAddress( uint32_t address )
  651. {
  652. uint8_t addrArray[4];
  653. addrArray[0] = address >> 24;
  654. addrArray[1] = address >> 16;
  655. addrArray[2] = address >> 8;
  656. addrArray[3] = address >> 0;
  657. switch( SX1280GetPacketType( ) )
  658. {
  659. case PACKET_TYPE_RANGING:
  660. SX1280HalWriteRegisters( REG_LR_REQUESTRANGINGADDR, addrArray, 4 );
  661. break;
  662. default:
  663. break;
  664. }
  665. }
  666. double SX1280GetRangingResult( RadioRangingResultTypes_t resultType )
  667. {
  668. uint32_t valLsb = 0;
  669. double val = 0.0;
  670. switch( SX1280GetPacketType( ) )
  671. {
  672. case PACKET_TYPE_RANGING:
  673. SX1280SetStandby( STDBY_XOSC );
  674. SX1280HalWriteRegister( 0x97F, SX1280HalReadRegister( 0x97F ) | ( 1 << 1 ) ); // enable LORA modem clock
  675. SX1280HalWriteRegister( REG_LR_RANGINGRESULTCONFIG, ( SX1280HalReadRegister( REG_LR_RANGINGRESULTCONFIG ) & MASK_RANGINGMUXSEL ) | ( ( ( ( uint8_t )resultType ) & 0x03 ) << 4 ) );
  676. valLsb = ( ( SX1280HalReadRegister( REG_LR_RANGINGRESULTBASEADDR ) << 16 ) | ( SX1280HalReadRegister( REG_LR_RANGINGRESULTBASEADDR + 1 ) << 8 ) | ( SX1280HalReadRegister( REG_LR_RANGINGRESULTBASEADDR + 2 ) ) );
  677. SX1280SetStandby( STDBY_RC );
  678. // Convertion from LSB to distance. For explanation on the formula, refer to Datasheet of SX1280
  679. switch( resultType )
  680. {
  681. case RANGING_RESULT_RAW:
  682. // Convert the ranging LSB to distance in meter
  683. val = ( double )SX1280complement2( valLsb, 24 ) / ( double )SX1280GetLoRaBandwidth( ) * 36621.09375;
  684. break;
  685. case RANGING_RESULT_AVERAGED:
  686. case RANGING_RESULT_DEBIASED:
  687. case RANGING_RESULT_FILTERED:
  688. val = ( double )valLsb * 20.0 / 100.0;
  689. break;
  690. default:
  691. val = 0.0;
  692. }
  693. break;
  694. default:
  695. break;
  696. }
  697. return val;
  698. }
  699. void SX1280SetRangingCalibration( uint16_t cal )
  700. {
  701. switch( SX1280GetPacketType( ) )
  702. {
  703. case PACKET_TYPE_RANGING:
  704. SX1280HalWriteRegister( REG_LR_RANGINGRERXTXDELAYCAL, ( uint8_t )( ( cal >> 8 ) & 0xFF ) );
  705. SX1280HalWriteRegister( REG_LR_RANGINGRERXTXDELAYCAL + 1, ( uint8_t )( ( cal ) & 0xFF ) );
  706. break;
  707. default:
  708. break;
  709. }
  710. }
  711. void SX1280RangingClearFilterResult( void )
  712. {
  713. uint8_t regVal = SX1280HalReadRegister( REG_LR_RANGINGRESULTCLEARREG );
  714. // To clear result, set bit 5 to 1 then to 0
  715. SX1280HalWriteRegister( REG_LR_RANGINGRESULTCLEARREG, regVal | ( 1 << 5 ) );
  716. SX1280HalWriteRegister( REG_LR_RANGINGRESULTCLEARREG, regVal & ( ~( 1 << 5 ) ) );
  717. }
  718. void SX1280RangingSetFilterNumSamples( uint8_t num )
  719. {
  720. // Silently set 8 as minimum value
  721. SX1280HalWriteRegister( REG_LR_RANGINGFILTERWINDOWSIZE, ( num < DEFAULT_RANGING_FILTER_SIZE ) ? DEFAULT_RANGING_FILTER_SIZE : num );
  722. }
  723. //int8_t SX1280ParseHexFileLine( char* line )
  724. //{
  725. // uint16_t addr;
  726. // uint16_t n;
  727. // uint8_t code;
  728. // uint8_t bytes[256];
  729. // if( SX1280GetHexFileLineFields( line, bytes, &addr, &n, &code ) != 0 )
  730. // {
  731. // if( code == 0 )
  732. // {
  733. // SX1280HalWriteRegisters( addr, bytes, n );
  734. // }
  735. // if( code == 1 )
  736. // { // end of file
  737. // //return 2;
  738. // }
  739. // if( code == 2 )
  740. // { // begin of file
  741. // //return 3;
  742. // }
  743. // }
  744. // else
  745. // {
  746. // return 0;
  747. // }
  748. // return 1;
  749. //}
  750. void SX1280SetRangingRole( RadioRangingRoles_t role )
  751. {
  752. uint8_t buf[1];
  753. buf[0] = role;
  754. SX1280HalWriteCommand( RADIO_SET_RANGING_ROLE, &buf[0], 1 );
  755. }
  756. //int8_t SX1280GetHexFileLineFields( char* line, uint8_t *bytes, uint16_t *addr, uint16_t *num, uint8_t *code )
  757. //{
  758. // uint16_t sum, len, cksum;
  759. // char *ptr;
  760. //
  761. // *num = 0;
  762. // if( line[0] != ':' )
  763. // {
  764. // return 0;
  765. // }
  766. // if( strlen( line ) < 11 )
  767. // {
  768. // return 0;
  769. // }
  770. // ptr = line + 1;
  771. // if( !sscanf( ptr, "%02hx", &len ) )
  772. // {
  773. // return 0;
  774. // }
  775. // ptr += 2;
  776. // if( strlen( line ) < ( 11 + ( len * 2 ) ) )
  777. // {
  778. // return 0;
  779. // }
  780. // if( !sscanf( ptr, "%04hx", addr ) )
  781. // {
  782. // return 0;
  783. // }
  784. // ptr += 4;
  785. // if( !sscanf( ptr, "%02hhx", code ) )
  786. // {
  787. // return 0;
  788. // }
  789. // ptr += 2;
  790. // sum = ( len & 255 ) + ( ( *addr >> 8 ) & 255 ) + ( *addr & 255 ) + ( ( *code >> 8 ) & 255 ) + ( *code & 255 );
  791. // while( *num != len )
  792. // {
  793. // if( !sscanf( ptr, "%02hhx", &bytes[*num] ) )
  794. // {
  795. // return 0;
  796. // }
  797. // ptr += 2;
  798. // sum += bytes[*num] & 255;
  799. // ( *num )++;
  800. // if( *num >= 256 )
  801. // {
  802. // return 0;
  803. // }
  804. // }
  805. // if( !sscanf( ptr, "%02hx", &cksum ) )
  806. // {
  807. // return 0;
  808. // }
  809. // if( ( ( sum & 255 ) + ( cksum & 255 ) ) & 255 )
  810. // {
  811. // return 0; // checksum error
  812. // }
  813. //
  814. // return 1;
  815. //}
  816. double SX1280GetFrequencyError( )
  817. {
  818. uint8_t efeRaw[3] = {0};
  819. uint32_t efe = 0;
  820. double efeHz = 0.0;
  821. switch( SX1280GetPacketType( ) )
  822. {
  823. case PACKET_TYPE_LORA:
  824. case PACKET_TYPE_RANGING:
  825. efeRaw[0] = SX1280HalReadRegister( REG_LR_ESTIMATED_FREQUENCY_ERROR_MSB );
  826. efeRaw[1] = SX1280HalReadRegister( REG_LR_ESTIMATED_FREQUENCY_ERROR_MSB + 1 );
  827. efeRaw[2] = SX1280HalReadRegister( REG_LR_ESTIMATED_FREQUENCY_ERROR_MSB + 2 );
  828. efe = ( efeRaw[0]<<16 ) | ( efeRaw[1]<<8 ) | efeRaw[2];
  829. efe &= REG_LR_ESTIMATED_FREQUENCY_ERROR_MASK;
  830. efeHz = 1.55 * ( double )SX1280complement2( efe, 20 ) / ( 1600.0 / ( double )SX1280GetLoRaBandwidth( ) * 1000.0 );
  831. break;
  832. case PACKET_TYPE_NONE:
  833. case PACKET_TYPE_BLE:
  834. case PACKET_TYPE_FLRC:
  835. case PACKET_TYPE_GFSK:
  836. break;
  837. }
  838. return efeHz;
  839. }
  840. void SX1280SetPollingMode( void )
  841. {
  842. PollingMode = true;
  843. }
  844. int32_t SX1280GetLoRaBandwidth( )
  845. {
  846. int32_t bwValue = 0;
  847. switch( LoRaBandwidth )
  848. {
  849. case LORA_BW_0200:
  850. bwValue = 203125;
  851. break;
  852. case LORA_BW_0400:
  853. bwValue = 406250;
  854. break;
  855. case LORA_BW_0800:
  856. bwValue = 812500;
  857. break;
  858. case LORA_BW_1600:
  859. bwValue = 1625000;
  860. break;
  861. default:
  862. bwValue = 0;
  863. }
  864. return bwValue;
  865. }
  866. void SX1280SetInterruptMode( void )
  867. {
  868. PollingMode = false;
  869. }
  870. void SX1280OnDioIrq( void )
  871. {
  872. /*
  873. * When polling mode is activated, it is up to the application to call
  874. * ProcessIrqs( ). Otherwise, the driver automatically calls ProcessIrqs( )
  875. * on radio interrupt.
  876. */
  877. if( PollingMode == true )
  878. {
  879. IrqState = true;
  880. }
  881. else
  882. {
  883. SX1280ProcessIrqs( );
  884. }
  885. }
  886. void SX1280ProcessIrqs( void )
  887. {
  888. uint16_t irqRegs;
  889. RadioPacketTypes_t packetType = PACKET_TYPE_NONE;
  890. if( SX1280GetOpMode( ) == MODE_SLEEP )
  891. {
  892. return; // DIO glitch on V2b :-)
  893. }
  894. if( PollingMode == true )
  895. {
  896. if( IrqState == true )
  897. {
  898. __disable_irq( );
  899. IrqState = false;
  900. __enable_irq( );
  901. }
  902. else
  903. {
  904. return;
  905. }
  906. }
  907. packetType = SX1280GetPacketType( );
  908. irqRegs = SX1280GetIrqStatus( );
  909. SX1280ClearIrqStatus( IRQ_RADIO_ALL );
  910. switch( packetType )
  911. {
  912. case PACKET_TYPE_GFSK:
  913. case PACKET_TYPE_FLRC:
  914. case PACKET_TYPE_BLE:
  915. switch( OperatingMode )
  916. {
  917. case MODE_RX:
  918. if( ( irqRegs & IRQ_RX_DONE ) == IRQ_RX_DONE )
  919. {
  920. if( ( irqRegs & IRQ_CRC_ERROR ) == IRQ_CRC_ERROR )
  921. {
  922. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxError != NULL ) )
  923. {
  924. RadioCallbacks->rxError( IRQ_CRC_ERROR_CODE );
  925. }
  926. }
  927. else if( ( irqRegs & IRQ_SYNCWORD_ERROR ) == IRQ_SYNCWORD_ERROR )
  928. {
  929. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxError != NULL ) )
  930. {
  931. RadioCallbacks->rxError( IRQ_SYNCWORD_ERROR_CODE );
  932. }
  933. }
  934. else
  935. {
  936. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxDone != NULL ) )
  937. {
  938. RadioCallbacks->rxDone( );
  939. }
  940. }
  941. }
  942. if( ( irqRegs & IRQ_SYNCWORD_VALID ) == IRQ_SYNCWORD_VALID )
  943. {
  944. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxSyncWordDone != NULL ) )
  945. {
  946. RadioCallbacks->rxSyncWordDone( );
  947. }
  948. }
  949. if( ( irqRegs & IRQ_SYNCWORD_ERROR ) == IRQ_SYNCWORD_ERROR )
  950. {
  951. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxError != NULL ) )
  952. {
  953. RadioCallbacks->rxError( IRQ_SYNCWORD_ERROR_CODE );
  954. }
  955. }
  956. if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
  957. {
  958. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxTimeout != NULL ) )
  959. {
  960. RadioCallbacks->rxTimeout( );
  961. }
  962. }
  963. break;
  964. case MODE_TX:
  965. if( ( irqRegs & IRQ_TX_DONE ) == IRQ_TX_DONE )
  966. {
  967. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->txDone != NULL ) )
  968. {
  969. RadioCallbacks->txDone( );
  970. }
  971. }
  972. if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
  973. {
  974. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->txTimeout != NULL ) )
  975. {
  976. RadioCallbacks->txTimeout( );
  977. }
  978. }
  979. break;
  980. default:
  981. // Unexpected IRQ: silently returns
  982. break;
  983. }
  984. break;
  985. case PACKET_TYPE_LORA:
  986. switch( OperatingMode )
  987. {
  988. case MODE_RX:
  989. if( ( irqRegs & IRQ_RX_DONE ) == IRQ_RX_DONE )
  990. {
  991. if( ( irqRegs & IRQ_CRC_ERROR ) == IRQ_CRC_ERROR )
  992. {
  993. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxError != NULL ) )
  994. {
  995. RadioCallbacks->rxError( IRQ_CRC_ERROR_CODE );
  996. }
  997. }
  998. else
  999. {
  1000. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxDone != NULL ) )
  1001. {
  1002. RadioCallbacks->rxDone( );
  1003. }
  1004. }
  1005. }
  1006. if( ( irqRegs & IRQ_HEADER_VALID ) == IRQ_HEADER_VALID )
  1007. {
  1008. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxHeaderDone != NULL ) )
  1009. {
  1010. RadioCallbacks->rxHeaderDone( );
  1011. }
  1012. }
  1013. if( ( irqRegs & IRQ_HEADER_ERROR ) == IRQ_HEADER_ERROR )
  1014. {
  1015. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxError != NULL ) )
  1016. {
  1017. RadioCallbacks->rxError( IRQ_HEADER_ERROR_CODE );
  1018. }
  1019. }
  1020. if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
  1021. {
  1022. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxTimeout != NULL ) )
  1023. {
  1024. RadioCallbacks->rxTimeout( );
  1025. }
  1026. }
  1027. if( ( irqRegs & IRQ_RANGING_SLAVE_REQUEST_DISCARDED ) == IRQ_RANGING_SLAVE_REQUEST_DISCARDED )
  1028. {
  1029. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxError != NULL ) )
  1030. {
  1031. RadioCallbacks->rxError( IRQ_RANGING_ON_LORA_ERROR_CODE );
  1032. }
  1033. }
  1034. break;
  1035. case MODE_TX:
  1036. if( ( irqRegs & IRQ_TX_DONE ) == IRQ_TX_DONE )
  1037. {
  1038. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->txDone != NULL ) )
  1039. {
  1040. RadioCallbacks->txDone( );
  1041. }
  1042. }
  1043. if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
  1044. {
  1045. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->txTimeout != NULL ) )
  1046. {
  1047. RadioCallbacks->txTimeout( );
  1048. }
  1049. }
  1050. break;
  1051. case MODE_CAD:
  1052. if( ( irqRegs & IRQ_CAD_DONE ) == IRQ_CAD_DONE )
  1053. {
  1054. if( ( irqRegs & IRQ_CAD_ACTIVITY_DETECTED ) == IRQ_CAD_ACTIVITY_DETECTED )
  1055. {
  1056. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->cadDone != NULL ) )
  1057. {
  1058. RadioCallbacks->cadDone( true );
  1059. }
  1060. }
  1061. else
  1062. {
  1063. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->cadDone != NULL ) )
  1064. {
  1065. RadioCallbacks->cadDone( false );
  1066. }
  1067. }
  1068. }
  1069. else if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
  1070. {
  1071. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxTimeout != NULL ) )
  1072. {
  1073. RadioCallbacks->rxTimeout( );
  1074. }
  1075. }
  1076. break;
  1077. default:
  1078. // Unexpected IRQ: silently returns
  1079. break;
  1080. }
  1081. break;
  1082. case PACKET_TYPE_RANGING:
  1083. switch( OperatingMode )
  1084. {
  1085. // MODE_RX indicates an IRQ on the Slave side
  1086. case MODE_RX:
  1087. if( ( irqRegs & IRQ_RANGING_SLAVE_REQUEST_DISCARDED ) == IRQ_RANGING_SLAVE_REQUEST_DISCARDED )
  1088. {
  1089. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rangingDone != NULL ) )
  1090. {
  1091. RadioCallbacks->rangingDone( IRQ_RANGING_SLAVE_ERROR_CODE );
  1092. }
  1093. }
  1094. if( ( irqRegs & IRQ_RANGING_SLAVE_REQUEST_VALID ) == IRQ_RANGING_SLAVE_REQUEST_VALID )
  1095. {
  1096. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rangingDone != NULL ) )
  1097. {
  1098. RadioCallbacks->rangingDone( IRQ_RANGING_SLAVE_VALID_CODE );
  1099. }
  1100. }
  1101. if( ( irqRegs & IRQ_RANGING_SLAVE_RESPONSE_DONE ) == IRQ_RANGING_SLAVE_RESPONSE_DONE )
  1102. {
  1103. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rangingDone != NULL ) )
  1104. {
  1105. RadioCallbacks->rangingDone( IRQ_RANGING_SLAVE_VALID_CODE );
  1106. }
  1107. }
  1108. if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
  1109. {
  1110. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rangingDone != NULL ) )
  1111. {
  1112. RadioCallbacks->rangingDone( IRQ_RANGING_SLAVE_ERROR_CODE );
  1113. }
  1114. }
  1115. if( ( irqRegs & IRQ_HEADER_VALID ) == IRQ_HEADER_VALID )
  1116. {
  1117. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxHeaderDone != NULL ) )
  1118. {
  1119. RadioCallbacks->rxHeaderDone( );
  1120. }
  1121. }
  1122. if( ( irqRegs & IRQ_HEADER_ERROR ) == IRQ_HEADER_ERROR )
  1123. {
  1124. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxError != NULL ) )
  1125. {
  1126. RadioCallbacks->rxError( IRQ_HEADER_ERROR_CODE );
  1127. }
  1128. }
  1129. break;
  1130. // MODE_TX indicates an IRQ on the Master side
  1131. case MODE_TX:
  1132. if( ( irqRegs & IRQ_RANGING_MASTER_RESULT_TIMEOUT ) == IRQ_RANGING_MASTER_RESULT_TIMEOUT )
  1133. {
  1134. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rangingDone != NULL ) )
  1135. {
  1136. RadioCallbacks->rangingDone( IRQ_RANGING_MASTER_ERROR_CODE );
  1137. }
  1138. }
  1139. if( ( irqRegs & IRQ_RANGING_MASTER_RESULT_VALID ) == IRQ_RANGING_MASTER_RESULT_VALID )
  1140. {
  1141. if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rangingDone != NULL ) )
  1142. {
  1143. RadioCallbacks->rangingDone( IRQ_RANGING_MASTER_VALID_CODE );
  1144. }
  1145. }
  1146. break;
  1147. default:
  1148. // Unexpected IRQ: silently returns
  1149. break;
  1150. }
  1151. break;
  1152. default:
  1153. // Unexpected IRQ: silently returns
  1154. break;
  1155. }
  1156. }